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The physical significance of gauge independence and gauge 
covariance in quantum mechanics? 

T E Feuchtwang, E Kazes, P H Cutler and H Grotch 
Physics Department, The Pennsylvania State University, University Park, Pennsylvania 
16802. USA 

Received 28 March 1983 

Abstract. The distinction between gauge independence and gauge covariance in electro- 
dynamics is considered for quantities of physical interest. The gauge independence of 
directly observable quantities, such as the spectra of operators and energy conserving 
transition rates, is discussed and contrasted with the gauge covariance of other quantities 
such as scalar products. The quasi-gauge-invariance of the classical Lagrangian and the 
invariance of the Euler-Lagrange equations under the addition of a total time derivative 
to the Lagrangian are discussed. The consequent inherent non-uniqueness of the 
Lagrangian and Hamiltonian formulations of classical mechanics is pointed out. A physical 
interpretation of the explicit gauge dependence of classical canonical momenta and of the 
expectation values of the corresponding quantum mechanical operators is presented. The 
gauge independence of energy conserving transition rates calculated in the conventional 
finite-order time dependent perturbation theory is discussed and illustrated. The gauge 
dependence of the conventional time dependent transition amplitudes in the presence of 
electromagnetic fields is then discussed, and gauge independent transition amplitudes are 
constructed. An alternative formulation of the quantum mechanics of charged particles is 
obtained in terms of a new gauge independent Hamiltonian, which is, as might be expected, 
unique only within an arbitrary canonical transformation. 

1. Introduction 

Several recent publications (Aharonov and Au 1981, Eckstein 1979, Kazes et a1 1982, 
Kobe and Smirl 1978, Kobe and Wen 1980, Yang 1982) reflect the on-going interest 
in clarifying the physical significance of gauge covariance and gauge independence 
both in non-relativistic and relativistic quantum mechanics. The enlightening comments 
by Aharonov and Au (1981) did not seem to have settled the lingering confusion 
relating to these important issues. 

The objectives of this paper are to clarify the distinction between the gauge 
independence and the gauge covariance$ of quantities of physical interest, when the 
electrodynamic potentials are subjected to a gauge transformation, and to report a 
recently discovered technique for the construction of gauge independent transition 
amplitudes and Hamiltonian operators (Feuchtwang et a1 1983, Kazes et al 1983). 

We believe that the misunderstanding of the significance of gauge dependence in 
quantum mechanics is due to the common misconception that the wavefunction provides 

i This work has been supported in part by the Office of Naval Research, Arlington, Virginia, contract no. 

$ Covariance literally means form invariance. To be consistent with current usage we hereafter use 
covariance. 

619-007. 
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a complete description of the physical state of a system. In fact, such a description 
requires not only the wavefunction but also the explicit representation of all observables 
or  operators. 

For the sake of simplicity we shall restrict ourselves to  the case of a single 
non-relativistic particle. Both these restrictions are non-essential and can be relaxed?. 
In our study we consider also classical mechanics which, by virtue of the correspondence 
principle, imposes constraints on the allowed and/or required gauge dependence of 
quantum mechanical operators. In particular, we interpret and clarify the gauge 
dependence of classical canonical momenta and of the expectation values of the 
corresponding quantum mechanical operators. We also discuss the implication of the 
gauge dependence of conventional time dependent transition amplitudes in the presence 
of electromagnetic fields. Two alternative resolutions of the difficulties posed by this 
gauge dependence are offered, namely, the construction of a gauge independent 
transition amplitude or of a gauge independent Hamiltonian. Both constructions are 
presented, and the relation between them is explained. 

Finally, we establish the relationship between the gauge dependence of the conven- 
tional minimally coupled quantum mechanical Hamiltonian (as well as of the corres- 
ponding wavefunctions) and a fundamental non-uniqueness of the Lagrangian formula- 
tion of classical mechanics; namely, the equations of motion are unaffected by the 
addition of a total time derivative to the Lagrangian. 

The outline of the paper is as follows. 
In 5 2 we discuss the physical significance of gauge covariance of operators in 

general and of the Schrodinger equation in particular. The non-uniqueness of the 
Lagrangian and canonical momentum both in classical and quantum mechanics is 
demonstrated and interpreted. The connection between the gauge covariance of the 
Schrodinger equation and the gauge dependence of the gauge covariant Hamiltonian 
is pointed out. 

In 9 3 we discuss the relation between the gauge independence of physical quantities 
and their measurability. The general conclusions are then tested by an examination 
of the eigenvalue spectra of directly observable Hermitian operators, and of gauge 
independent transition amplitudes. Specifically it is demonstrated that in general the 
conventional definition of transition amplitudes assures the gauge independence only 
if they are calculated either after the electromagnetic fields have been turned off, or 
else if they are calculated for energy conserving transitions. The calculational con- 
sequence of these results is discussed and illustrated by a treatment of the electric 
dipole approximation in first-order perturbation theory. 

In 9 4, the gauge dependence of the conventional time dependent transition ampli- 
tudes is considered and interpreted. Two new constructions are described, either of 
which assures the gauge independence of transition amplitudes in the presence of 
electromagnetic fields. The freedom of choice of the Lagrangian, and associated 
canonical momentum and Hamiltonian operators, is utilised in this new theory, to  
define gauge independent transition amplitudes, by introducing a gauge field either 
into the field free Hamiltonian or into the full Schrodinger equation. 

In  the first procedure the solutions of the modified field-free Hamiltonian undergo 
the same unitary transformation as the solutions of the full Schrodinger equation when 
the potentials are gauge transformed. In the second procedure the ‘gauge function’ f 
makes the full Schrodinger equation gauge independent. 

f See Kazes el a l  11982) for details 



Gauge independence and gauge covariance in QM 153 

Both procedures eliminate the gauge dependence of the transition amplitudes at 
the cost of introducing a dependence on the path of integration specifying the gauge 
function f. This non-uniqueness is traced to the corresponding non-uniqueness of the 
Hamiltonian, which is defined only within a canonical transformation. 

In § 5 we present a discussion of our results, our conclusions, and proposed 
extensions of our theory to quantum field theory as well as other gauge theories. 

2. The physical significance of gauge covariance 

The physical requirement that a change in the gauge of the electrodynamic potentials 
should have no dynamical consequences implies that all operators, as well as the 
equation of motion, should be covariant under such a tramformation?. It is well known 
that as a result of the gauge transformation, 

i a  
Ao( r, t )  -+ Ab ( r, t )  = A,( r, t )  - - - A(  r, t ), 

c at 

A(r, t ) + A ' ( r ,  t ) = A ( r ,  t )+VA(r,  t ) ,  (2.1) 

all state vectors are subject to the same unitary transformation$. Specifically, if we 
denote gauge transforms of operators and wavefunctions by a prime, then 

$(r ,  t )  -+ $' (r ,  t )  = U,+(r, t ) .  (2.2) 

The gauge covariance of the Schrodinger equation means that 

[ X (  r, p ;  A, A,) - iAa/at]$ ( r ,  t )  = 0 

and 

[ ~ ( r , p ; A ' , A b ) - i h a / a t ] ~ ' ( r ,  t ) = O .  (2.3a) 

This requires that the gauge transformed Hamiltonian satisfy the equation 

X ( r , p ;  A',Ab) = U , X ( r , p ;  A, A,)U;' -iftU,o;' = % ( r , p ;  A, Ao)-(e/c)aA/at. 

(2.36) 

In (2.3) and henceforth, unitary transforms are denoted by a tilde. The unitary 
transformation U ,  must satisfy the relation 

U,, = exp[ieA(r, t)/hc], (2.4) 

X ( r , p ; A , A , ) = ( 2 m ) - ' ( p - ( e / c ) A ( r ,  z ) ) ~ +  V(r)+eA,(r,  t ) .  (2.5) 

and the Hamiltonian is 

Equation (2.3b) is so important in the ensuing discussion that it deserves some 
further elaboration. We first note that the operator on the left-hand side of (2.3b) 
represents the Hamiltonian in the new gauge in terms of the gauge transformed 

t By gauge covariance of operators we mean that all operators which do not explicitly depend on the 
four-potential are unaffected by a transformation of these potentials. All other operator functions F(r ,  p ;  A,) 
transform into F ( r ,  p, Ah). 
$. This transformation is sometimes referred to as a gauge transformation of the first kind, in contrast to 
the gauge transformation of the potentials which is then referred to as a transformation of the second kind. 



154 T E Feuchtwang, E Kazes, P H Cutler and H Grotch 

four-potentials of (2.1),  

%‘(A’, AA) = (2m)-’(p-(e/c)A‘(r,  t ) ) ’ +  V(r)+eAA(r, t ) ,  

where p is the same momentum operator as in (2.5).  

momentum, 
Next note that one can also express %(A’, AA) in terms of the unitarily transformed 

p’ = p  - (e/c)VA, ( 2 . 3 ~ )  

and the original four-potentials: 

%‘(A’, Ab) = X ( A ,  An) = %(A, An) -(e/c)aA/at, (2.3d) 

with 

%(A, A,) =(2m)-’(@-(e/c)A(r,  t ) ) ’ +  V(r)+eAn(r ,  t ) .  (2.3e) 

The second form for the gauge transformed Hamiltonian, (2.3d) and (2.3e),  
emphasises the equivalence of gauge and canonical transformations to be discussed 
below. 

In conclusion, it is important to note that while the Hamiltonian operator is gauge 
covariant, it is not gauge independent. Furthermore, for explicitly time dependent A, 
the transformed Hamiltonian %‘(A’, AA) is not the unitary transform of %‘(A, A,). 

A similar analysis applies to the commutation relations. The canonical commutation 
relations characterise the operator algebra of the system, i.e. they specify the physical 
system considered. This implies that they too should be covariant under gauge transfor- 
mations. In fact, the commutators are canonical invariants, 

[pL, +I= +si, = [ p i ,  xll ,  
[x,, x,l= 0 = rx:, .:I, i,j = 1,2,3. (2.6) 

[Pi, P,l = 0 = [ P : ,  p:  I, 

The most general unitary transformation which satisfies (2.6) and keeps the coordinate 
operators invariant is the following (canonical) transformation of the canonical momen- 
tum operators, 

(2.7) 

where f is an arbitrary function of (r,  t ) .  The commutation relations therefore define 
the canonical momentum operator only up to the gradient of an arbitrary function. 

A corresponding arbitrariness is also familiar in classical mechanics. The Euler- 
Lagrange equations of motion are unaffected by the addition of the total time derivative 
of an arbitrary function of ( r ,  t )  to the Lagrangian (Goldstein 1980). Therefore the 
Lagrangian for a charged particle in the presence of an external electromagnetic field 
is 

(2.8) 

~ , + b , = e x p  (+ief(r, t ) / h c ) p ,  exp(-ief(r, t ) / h c ) = p , - ( e / c ) / a , f ,  

2 = $ m i 2 + ( e / c ) i  * A -  V(r)-eA,-(e/c)df(r, t) /dt  

and thus the classical canonical momentum, 

p, = a 2 /  ai ,  = mi, + ( e/ c )  ( A ,  - a i ) ,  ( 2 . 9 ~ )  

is only defined within the arbitrariness of the vector potential and of (e/c)a,f 
Evidently the gauge transformation, 

A,+AL =A,-dA/ax”, (2.10) 
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modifies the Lagrangian of (2.8), 

2 + 2 ” ( r ,  i, A ; ) = T ( r ,  i , A , ) + ( e / c ) d A / d t ,  (2.11) 

where we have assumed that f ( r ,  t )  does not depend on A,. Thus, this Lagrangian is 
only quasi-invariant under a gauge transformation. Furthermore, ( 2 . 9 4  demonstrates 
that the classical canonical momentum is arbitrary for two completely independent 
reasons, namely, the freedom in the choice of both fand  the gauge for the four-potential. 
It is, however, remarkable that the gauge transformation A + A’ = A + V A  for a fixed 
f affects the canonical momentum in the same way as the transformation f-f-14 for 
fixed four-potentials. This confirms the gauge dependence of the conventional classical 
canonical momentum, and suggests a possible procedure for its elimination. These 
points are considered next. 

The equations of motion of a charged particle depend only on the electric and 
magnetic fields. They are independent of both the gauge A and the function f that 
appears in (2.8). This, however, does not apply to the canonical momentum. The 
gauge independence of the classical particle velocity implies that the simultaneous 
gauge transformation of A,  + A; and the transformation f -  f ’  necessarily induce a 
transformation of the classical canonical momentum such that 

P: - P, = ( e /  c ) [ A ;  -A,  - a , ( f ’  - f ) I .  (2.12) 

If in particular f = f ’  = 0 then a gauge transformation must also change the canonical 
momentum. Alternatively, if we choose p, to be gauge independent, then we must 
introduce the function f into the Lagrangian, to assure the gauge independence of the 
right-hand side of (2.12). Proceeding from classical to quantum mechanics we note 
that the last term in (2.8) is often omitted, and hence ( 2 . 9 ~ )  becomes 

i,= m - ’ ( p , - - ( e / c ) A , ) .  (2.96) 

Classically, the velocity is directly observable and hence necessarily gauge independent. 
Thus the correspondence principle requires the expectation value of the velocity 
operator to be also gauge independent. This is demonstrated below. Proceeding from 
( 2 . 2 )  and ( 2 . 3 ~ )  we have 

( $ 1 ~ -  ( e / c ) A l + )  = (U,Sl U , ( p -  ( e / c ) A )  U;’ I U,$) = ( + ’ l ( i -  ( e / c ) A ) l 4 ’ ) .  (2.13) 

However, using ( 2 . 3 ~ )  and (2.1) we obtain 

( + ’ I i - ( e / c ) A l S ’ )  = ( + ’ I p - ( e / c ) A ’ I + ’ ) .  

Combining (2.13) and (2.14), we obtain (2.15), 

(2.14) 

( + l p - ( e / c ) A / + )  = ( S ’ I p - ( e / c ) A ’ l + ’ ) .  (2.15) 

To conclude, (2.14) and (2.15) demonstrate that the conventional gauge dependent 
velocity operator is gauge covariant under a gauge transformation, 

r’= i -  ( e / m c ) V A ,  ( 2 . 9 ~ )  
and has a gauge independent expectation value. 

This conclusion is generally valid. The gauge independence of classical observables, 
such as the velocity, does not necessarily imply the gauge independence of the corres- 
ponding quantum mechanical operators. It does, however, imply the gauge indepen- 
dence of their expectation values. This condition implies also that for such operators 



156 T E Feuchtwang, E Kazes, P H Cutler and H Grotch 

the gauge transform is equal to the unitary transform, defined by (2.4). Therefore 
these operators, 6, must satisfy the relation 

6 = U*&J,' = d f .  (2.16) 

In contrast, canonical variables can be defined with a considerable amount of 
arbitrariness, reflecting their dependence on the gauge of the four-potential and the 
additive total time derivative in the Lagrangian. The latter factor manifests itself also 
in the transition from classical to quantum mechanics and in the different realisations 
of the canonical commutation relations, equations (2.6). According to (2.7), the 
gradient of the arbitrary function f can be added to any given expression for the 
canonical momentum operator without any physical consequence. This illustrates the 
known fact that canonical variables are auxiliary constructs introduced at the con- 
venience of the observer, rather than being unique observables specified by the 
phenomena studied. It is instructive to note that gauge covariance requires the 
canonical momentum to be gauge independent. The canonical momentum operator, 
for which p' = p,  necessarily has a gauge dependent expectation value which, in agree- 
ment with the correspondence principle, satisfies the classical gauge transformation, 
(2.12), with f= 0. Proceeding from the correspondence principle and (2.2), 

(+'I P'I +') = ( $ 1  Ui'pu~I +) = ( $ 1  PI+) + (+I( e/ c)VAI +), (2.17) 

where the last equation follows from (2.4) and (2.7). 
The preceding emphasises that a given wavefunction does not represent the same 

physical state of a system in two different gauges. A complete description of a given 
state requires the specification of a wavefunction and of all the operators representing 
measurable quantities. This may require the explicit specification of the gauge, as in 
the case of the velocity operator, equation ( 2 . 9 ~ ) .  This point also is illustrated by the 
following example. 

The wavefunctions 

+ ( r )  = ( 2 . 1 8 ~ )  

and 

+'(r) =exp{i[k r + e A ( r ,  t)/hc]} (2.18 b )  

refer to two different physical states if the momentum operator is defined as 

p = -ihV. (2.19) 

On the other hand, these wavefunctions represent the same physical state in two 
different gauges, if in the second gauge the momentum operator is given by 

p ' =  UApUi' =-ihV-(e/c)VA. (2.20) 

We conclude this discussion of gauge covariance with the observation that the covari- 
ance of the Schrodinger equation, as defined by (2.2)-(2.4), inherently causes the 
gauge covariant Hamiltonian to be gauge dependent. We shall see below that in order 
to obtain a gauge independent Hamiltonian it is necessary to redefine the canonical 
momentum and the Hamiltonian, within the Lagrangian formalism, in terms of the 
arbitrary function f so that their dependence on the potentials will only involve the 
gauge independent combination A, + af /axp.  
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3. Gauge independence and measurability 

3.1. The significance of gauge independent eigenvalue spectra of direct observables 

The correspondence principle suggests that all directly observablet operators must 
have gauge independent expectation values and conversely, a gauge dependent expecta- 
tion value cannot represent the outcome of a measurement. The prediction of the 
outcome of measurements, by two different observers, on identical systems must 
therefore be identical, whether or not they communicate to each other their respective 
choice of gauge. Furthermore, if calculated predictions concerning the outcome of 
measurements are based on different gauges, then it is not necessary to exhibit the 
gauge transformation relating them, in order to assure their identity. For instance, 
the canonical momentum, +AV, which has gauge dependent expectation values is not 
a directly observable operator (Cohen-Tannoudji 1977, Aharonov and Au 1981). 

Among the manifestly gauge independent quantities we have the eigenvalue spectra 
of all directly observable Hermitian operators. This is the case because corresponding 
wavefunctions in different gauges are related by unitary transformations and directly 
observable operators satisfy (2.16). In reference to the energy spectrum, one has to 
recall that the unitary transform of the time independent Hamiltonian % is not the 
conventional gauge transform of this operator, X' = %(A). The conventional definition 
of the gauge transformed Hamiltonian follows from the transformed Schrodinger 
equation, 

[X(A)-iha/at]$:(t) =0,  (3.1) 

%(A) = U,,%U,' - ( e / c )  aA/at, 

+: ( t )  = e-iP'/h4: ( t )  = e-l"/fiUA4E, 

( U,kX U ,  - E ) 4 : ( t ) = 0. 

where, by virtue of (2.3b), 

(3.2) 

and thus %(A) is not the unitary transform of %. However, writing 

(3.3) 

where + E  is time independent, we obtain the 'time independent' form of (3.1), 

(3.4) 

Equation (3.4) is evidently the gauge transform of 

(2- &)& = 0. (3.5) 

Thus the gauge transformation corresponds, as far as the 'time independent' Schrodin- 
ger equation is concerned, to a unitary transform of (3.5) into (3.4). Therefore, in 
this limited sense the energy spectrum is explicitly gauge independent. 

3.2. Gauge independent transition amplitudes 

Another important class of gauge independent quantities are the transition amplitudes 
discussed below. 

t By directly observable operators we mean operators corresponding to variables which can be measured 
directly without the need for calculations involving theoretical constructs, e.g. the position and velocity, in 
contrast to the canonical momentum, which requires for its determination the evaluation of A ( r ) ,  as well 
as a definite choice of the Lagrangian. 
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3.2.1. The general time dependent overlap matrix elements. Consider the field-free 
Hamiltonian, 

X O = p 2 / 2 m +  V ( r ) ,  (3.6) 

(%',-&)4,=0. (3.7) 

and the corresponding eigenfunctions { 4F} ,  

The effect of switching on an electromagnetic field at t = to is to transform a given 
eigenfunction 4 p ( r )  of the field-free Hamiltonian into the wavefunction $A(r,  t ;  E )  

which satisfies the wave equation 

[%!(A, A,)-iha/at]$~(r,  t ;  & ) = O ,  (3.8) 

GA(r,  to;  E )  = &(r ,  to)  = exp (-iEtolh)dJE(r). (3.9) 

subject to the initial condition 

Neither the Hamiltonian %'(A, A,) nor the wavefunction $A(r, t ;  E )  is uniquely deter- 
mined by the physical state of the system, because the potentials are only specified 
within a gauge transformation. One might expect this non-uniqueness to affect the 
calculation of transition amplitudes to be considered next. 

Let $Ai and $A2 be two wavefunctions related by a gauge transformation, 

$,+(r, t ;  E )  =exp [ieNr, t ) l h ~ l $ ~ , ( r ,  t ;  E ) ,  (3.10) 

where 

A2 = A 1 + V A,  A,,,, = Ao.1 - C -  ' a h / a t .  (3.1 1 a,b)  

Evidently the overlap matrix elements of the wavefunctions (LA, and the field-free 
eigenstates {4c} are. in general, gauge dependent. That is, 

(dJE'14LA,(f; E ) )  f (dJ,,I$.&; E ) ) .  (3.12) 

This observation is unrelated to the known gauge invariance of scalar products, which 
guarantees that the evaluation of an overlap matrix, specified by a given choice of 
potentials, can subsequently be carried out in any gauge, i.e., 

(3.13) 

The significance of (3.12) was considered by -4haronov and Au (1981) (AA). They 
noted that the time dependent matrix element (4Fl[$A,(f; E ) )  is the probability ampli- 
tude for the measurement of the quantity X(, = p 2 / 2 m  + V ( r )  to yield, in the state $,\,, 
the value E ' .  This implies that the fraction of times for which the repeated evaluation 
of the quantity 

(4E,Ihl(t;  8 ) )  =(U,4,,l c J , $ A , ( f ;  E ) ) .  

X o  = ( 2 m ) - ' (  mu+ ( e / c ) A , ( r ) ) * +  V ( r ) ,  

in terms of basic gauge invariant measurable quantities, r and U, yields E '  is 
I(4,'I(LA,(t; &))I2.  Aharanov and Au stress that, because of their dependence on Ai, 
the field-free Hamiltonians above represent distinct and gauge dependent functions 
of r and U. Hence the dependence of the corresponding probability amplitudes on Ai, 
and the inequality of (3.12), have a clear physical meaning. 

We shall extend and complement the analysis of AA, by demonstrating the precise 
conditions under which it applies. We shall distinguish three cases: 

(a) transition amplitudes calculated for times after the fields are switched off; 
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(b) energy conserving transition amplitudes; 
(c) transition amplitudes in the presence of fields. 

In the first two cases we shall show that the transition amplitudes are explicitly gauge 
independent. In the third case, to be considered in § 4, we shall present an explicit 
construction of gauge independent transition amplitudes?. 

3.2.2. Transition amplitudes after the fields have been turned off. Consider the case 
where two gauge equivalent potentials have been used to describe a system. After 
the electromagnetic fields have been turned off, the wavefunctions (CIA,(r, t ;  E )  satisfy 
the field-free wave equations, 

[ ~ ~ ’ ( h , ) - i h a / a t ] ( ~ ~ ~ , ( r ,  t ;  E )  = o ,  (3.14) 

where 

Xr’ ( A ,  ) = ( 2 m)-I ( p  - ( e /  c)V A i )  ’ + V ( r )  - ( e /  c )  a A, / a t, (3.15) 

Equation (3.15) shows that the freedom in the choice of gauge destroys the uniqueness 
of the Hamiltonian not only in the presence of fields, but also in their absence. However, 
the gauge used to describe a given system in the absence of fields is not completely 
arbitrary, because one and the same gauge function h ( r ,  t )  must be used at all times. 
The terms VAi and c-’dAi/at  in (3.15) represent the ‘pure gauge’ or ‘residual gauge’ 
fields which survive after the electromagnetic fields are turned off. A similar consider- 
ation applies to %‘k-’, the field-free Hamiltonian describing the system before the 
electromagnetic fields were turned on. Therefore, at a given fixed time at which the 
fields are off, both asymptotic forms of the Hamiltonians are given by 

%‘,J1il) = U,t%‘oU;tl - (e /c)aA, /at .  (3.16) 

Consequently the physically meaningful transition amplitudes from a state after the 
fields are turned off to states of the field-free Hamiltonian at the same time are 

(ILL’ ( t ) l  (CIA(f; = ( exp (-iE’ f / h )  ~ E ’ I  (CIA( t ;  E )) (3.17a) 

(3.17 b )  

where (CIL, ( t )  is the solution to the field-free version of the Schrodinger equation defined 
by (3.1). Equation (3.17a) follows from (3.3) and (3.4), and (3.17b) is an identity 
for unitary operators U,,. However, 

U , f $ A l ( r ;  E ) =  u;:$,42(t; E ) ,  (3.18) 
since both functions are solutions of the same wave equation and they satisfy the same 
initial conditions. The latter statement holds because at any time to after the fields 
have been turned off, 

(3.19) 

i = 1,2.  

= exp ( i E ’ t / h ) ( 4 d  U ~ ’ ( C I ~ ( ~ ;  E ) )  

AI - A2 = VA = V A ,  - VAz,  

therefore 

(CIA] = U,*A2 = u,:(LA2. (3.20) 
But (3.20) is equivalent to (3.18). Thus we conclude that the physically meaningful 
transition amplitudes (de,l Uil(CIA(t; E ) )  are independent of the gauge of the potentials 
(A, Ao), in contrast to the conventional amplitudes of (3.12). 

A preliminary report of this result was presented by Feuchtwang et a/  (1983). 
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3.2.3. Energy conserving transition probabilities. The preceding discussion of the gauge 
independence of the transition amplitudes observed after the fields are switched off is 
perfectly general. However, it is more an existence theorem than a tool in actual 
calculations. In general, one does not have available the exact wavefunction (LA(r, t; E ) ,  

but rather an approximation of the exact asymptotic state CL, by an nth-order perturba- 
tion theory. Here we define CL, by the limit 

lim (LA(r, t ;  E )  = & ( r ;  E ,  h).  
I+X 

(3.21) 

The effect of an electromagnetic field switched on adiabatically at t = --CO and off at 
r = CD is now described by the transitions it induces between the field-free eigenfunctions 
{ 4 E }  of Xo. In calculating these transition probabilities by perturbation theory it is 
impractical to ensure the gauge independence explicitly in each order. As shown by 
Kazes et al (1982) the transition amplitudes are gauge independent, i.e. satisfy 

(4F,l+n(E, .A = 0 ) )  = (4C’l+JI(E, A)) =(&I U/ \+33(E? A = O ) ) ,  (3.22) 

(1) the transition conserves energy, i.e. the energy difference ( E  - E ’ )  is transferred 

(2) the time dependent gauge function satisfies the condition 

if and only if: 

to (from) the particle from (to) the radiation field?; 

lim A(r ,  t )  = lim A(r ,  t ) .  
I - - ,  I - =  

(3.23) 

Note that this condition corresponds to equation (3.16). 

with the familiar gauge invariance of scalar products, i.e. 
The gauge independence of the overlap matrix elements in (3.22) is to be contrasted 

( 3 . 2 4 ~ )  

(4EsI+=(~, A) )=(4c , I  ui(Lr(~, A = O ) ) = ( u i 1 4 e , I ( L d ~ ,  A = O ) ) .  (3.246) 

Equations (3.24) indicate that since U,%#I,  equation (3.22) should not be expected 
to hold for arbitrary E and E ’ .  

It should be emphasised that the gauge independence of energy conserving transition 
probabilities applies not only to the exact probabilities, but also order by order in 
perturbation theory (Kazes et a1 1982). This is particularly important in practical 
calculations, which of necessity are often restricted to a finite-order perturbative 
treatment. In this case, one is concerned with the transition rates induced by the time 
dependent perturbation XI, 

(3.25) 

where n is the order (in e) of the perturbation theory and X f n ’  is the nth iterated or 
effective interaction operator. These rates are gauge independent if the transition 
conserves energy, i.e. if 

d Pbvi / d t = ( 2 T/ h) I ( 4c 8 1 Xi I 4e ) 1 l ,  

E ’ - & +  1 h w , = O ,  
i = l  

(3.26) 

t In fact Kazes er a1 (1982) dealt only with closed systems including the radiation field, for which the gauge 
independent transition amplitudes were shown to involve states of equal energy. However, that result is 
equivalent to the one above in which the radiation field is treated as an external field. The importance of 
energy conservation in assuring the gauge independence of matrix elements has been noted by Fried (1973), 
Haller and Landowitz (1970), Aharonov and Au (1979) and Kazes er a1 (1982). 
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where the photon frequency wi is taken positive (negative) if it labels an absorbed 
(emitted) photon. 

The physical significance of our result is illustrated by the following example of 
the perturbative treatment of the interaction of electromagnetic radiation with matter 
in the electric dipole approximation. In this approximation, the spatial variation of 
the fields is neglected over the region in which the overlap of the initial and final 
(unperturbed) states is significant. That is, the long wavelength limit is taken, so that 

A(r, t)  =A(O) e-’””+cc 
and 

E ( r ,  t ) = E ( O )  e-iw’+cc, ( 3 . 2 7 )  

The system can be described by two equivalent Hamiltonians. The first includes 

X(A,O) =(2m)-’[p-(e/c)AI2+V(r) = Xo+XI(A,O), (3 .28 )  

where A(0) and E ( 0 )  are constant vectors. 

only a vector potential, 

where 

XI(A,O)= -(e/2mc)(p A + A  * p)+(e2/2mc2)A2 
and 

E = -c-’aA/at. 

The second Hamiltonian includes only a scalar potential, 

X(0,Ab)=p2/2m+ V(r)+eAb= X,,+XI(O,Ab), 

where 

XI(O, Ab) = eAb 
and 

E =  -VAb. 

Evidently the two sets of potentials, 

A = A(0) cos w t  = ( c / w ) E ( O )  cos wt, Ao=O, 
and 

A’ = 0 ,  Ab = -eE(O) * r sin ut, 

are related by the gauge transformation defined by 

A ( r , r ) =  - ( c / w ) E ( O )  - rcoswt .  

The wave equations are also gauge transforms of each other, 

U,,(X(A, 0) -ifia/at) U,’ = X ( 0 ,  AA) -ifia/at. 

(3 .29 )  

(3 .30 )  

(3 .31 )  

(3 .32 )  

(3 .33 )  

(3 .34a ,  b )  

(3 .35a ,  b )  

(3 .36 )  

(3 .37 )  

The interaction operators XI(A, 0) and XI(O, Ab) are clearly not unitarily equivalent, 
and hence exhibit generally different matrix elements. Thus, in agreement with the 
general argument of Kobe (1978)  and Yang (1981) ,  the first-order transition ampli- 
tudes are generally gauge dependent, e.g. 

( ~ E , I X ~ ( O y  AoIIA) =[fiw/(&’- &)I(&lx~e,(A, O ) I A ) .  (3 .38 )  
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However, the energy conserving first-order transitions can only occur between states 
for which 

E' - E = hw, (3.39) 

and in this case the corresponding observable transition amplitudes are strictly gauge 
independent. 

4. Gauge dependence of transition amplitudes and the construction of gauge 
independent amplitudes in the presence of fields 

4.1.  Interpretation of gauge dependence of some transition amplitudes 

In our discussion of gauge independence we emphasised that no directly observable 
quantity can be gauge dependent. We have noted that the time dependent transition 
amplitudes in the presence of electromagnetic fields may be gauge dependent, and we 
have outlined an argument due to Aharonov and Au (1981) showing that this is to 
be expected. It is therefore important to realise that while gauge dependent transition 
amplitudes may occur in an intermediate stage of a calculation, the gauge dependence 
always drops out of the final result, representing the prediction of the outcome of an 
experiment, since such results are inherently gauge independent. Stated differently, 
gauge dependent transition amplitudes are never necessary for the interpretation of 
an experiment. This point is illustrated by the following discussion concerning the 
interpretation of the Lamb shift experiment. 

A possible approach would be to interpret this experiment as an observation of 
the radiative transition of a hydrogen atom from its 2s to its 2P manifold. The 
corresponding transition amplitude in the presence of the microwave field is gauge 
dependent. However, this calculated result is strictly irrelevant to the interpretation 
of the experiment. The actual observation consists of the detection of photons. Since 
the photon number operator has a gauge independent expectation value, neither the 
actual nor the calculated prediction of the outcome of the experiment is gauge 
dependent. 

We now proceed to a more detailed analysis of the gauge dependence of time 
dependent transition amplitudes in the presence of fields. This will enable us to derive 
a gauge independent transition amplitude. 

One might interpret the overlap matrix (#E j I+A( t ;  E ) )  as the conditional probability 
amplitude at time f, for finding the system in the field-free state & if it is known to 
be in the state E ) .  However, we note that: 

(i) there is not given a precise operational specification of how we are to determine 
that the system is in the state & at time f (Aharonov and Au 1981); 

(ii) neither the field-free Hamiltonian Xo nor its eigenfunctions {&} is uniquely 
defined by the physical field-free state of energy E. 

In fact, both (2.7) and the non-uniqueness of the Lagrangian within a total time 
derivative of an arbitrary function (see (2.8)) imply that Xo is a functional off,  

(4.1) 

In order to obtain (4.1) we have, in contrast to (2.8), added to (rather than subtracted 
from) the conventional Lagrangian the term ( e / c ) d f / d t ,  where as noted before f is a 
completely arbitrary function of ( r ,  t ) .  

X0[ f ] = ( 2 m ) - ' ( p  - ( e /  c)vf)* + V (  r )  - ( e /  c)af/at. 



Gauge independence and gauge covariance in QM 163 

From (3.1)-(3.3) we conclude that the eigenfunctions {de[ f ] }  are defined in terms 
of the solutions of the corresponding Schrodinger equation, 

(Xo[ f l - i f i a /a t )+E[ f ( f ) ,  t l  =o,  ( 4 . 2 )  

+ [ f ( t ) ,  t ]  = ei"""+E[f] = eie"* U#Jf= 017 

which have the form 

(4.3) 

where 

( U,%,[f= 01 U;' - E ) & [  f 3 = 0. ( 4 . 4 )  

Thus, if we interpret 'being in the field-free state 46' as 'having an unperturbed energy 
E ' ,  then it follows that in the presence of fields the overlap matrix ( + e ' [ f ] l + A ( t ;  E ) )  is 
a functional of the arbitrary function f(r, t )  used to define the field-free Hamiltonian. 
An operational definition of the field-free state with energy E evidently requires a 
definite choice of f. One possible choice is to make f(r, t )  a functional of the four- 
potential A,, so that the overlap matrix becomes independent of any particular choice 
of A,, (Feuchtwang et a1 1983). Here we note that the adiabatic switching on of the 
fields and of f(r, t )  guarantees the independence of +A(r, t ;  E )  from f ( r ,  t ) .  An alterna- 
tive to the procedure described above is to make the Hamiltonian itself gauge indepen- 
dent (Kazes et al 1983). That is, following the reasoning that suggested the definition 
of X,,[f], but using ( 2 . 8 ) ,  we now obtain 

qfl= ( 2 m ) - ' [ p - ( e l c ) ( A - V f ) ] ' +  V ( r ) + e ( A , + c - ' d f / a t ) .  (4.5) 

Here again f is a functional of A, which now cancels the gauge dependence of the 
conventional Hamiltonian %f=  01, rather than just of the transition amplitudes. As 
we shall show below, the two approaches are quite similar, and, as might be expected, 
they involve the same functional f [A, , ] .  

4.2. Determination of the functional f[A,] 

As noted above, we can obtain gauge independent transition amplitudes either by 
introducing into the field-free Hamiltonian an appropriate gauge dependence, or by 
defining the full Hamiltonian in a gauge independent fashion. In either case we 
introduce into the Lagrangian the total time derivative df ldt  of a function r ( r ,  t )  which 
we shall now construct. 

We shall first determine the arbitrary function f ( r ,  t )  as a functional of A,  so that 

X 0 [ A ,  + a , A ] =  U,,X,[A,]Ui\' -ifiU,,o;', ( 4 . 6 )  

and hence also 

&[A, +a ,A l=  U*d%[A,I. (4 .7 )  
Equations (4 .5 )  and (4 .6 )  imply that the same overlap matrix is obtained with two 
different choices of the four-potential, related by a gauge transformation. That is, if 

( 4 . 8 )  
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It is easily verified that f [A , ]  has to satisfy the following functional relation: 

f[A, + a,A] = f[A,] + A +constant. (4.10) 

This functional equation is solved by any of the following four-dimensional path 
integrals. 

f = A, (x)dxp. (4.11) 

We note that an alternative path C between '0' and ( r ,  t )  will define a function f such 
that the difference f- f is given by a closed contour integral of A,. Such an integral 
is clearly gauge independent, because the closed contour integral of a four-gradient 
vanishes. Thus we can write 

f =  f:"" A,(x) d x p + g ( r ,  t ) ,  
0 

(4.12) 

where c1 is an arbitrary but fixed 'standard' path, and g ( r ,  t )  is an arbitrary gauge 
independent function (Kazes et a1 1982). Here it should be emphasised that in general 
A, is not a gradient and hence 

d,,f # A,,. (4.13) 

However, after the field has been switched off, then over a simply connected region 
A, reduces to a pure gauge field, 

a,f = A,, (4.14) 

Here we note that (4.11) is not the only class of functionals satisfying (4.10). 

f =a,A,/O, (4.15) 

where 0 is the d'Alembertian, and the operator ?/U is to be interpreted in terms 
of its Fourier transform, provided A,, has such a transform. 

We now turn to the alternative procedure for the determination of gauge indepen- 
dent transition amplitudes. As noted before, the conventional minimally coupled 
Lagrangian is not gauge independent, rather it is gauge quasi-invariant. However, an 
appropriate choice of the function f in (2.8) makes the Lagrangian gauge independent. 
Consequently also the Hamiltonian and the canonical momentum become gauge 
independent. If the full Hamiltonian a'e[f] is to be gauge independent, then it follows 
from (4.5) and (4.10) that both 

A'-Vf[A', A;]=A-Vf[A, A,] (4.16) 
and 

AA + c-'(a/dt)f[A', A&] = A,+ c- ' (a /d t ) f [A ,  Ao]. (4.17) 

These functional equations for f[A,] are evidently equivalent to (4.10). Thus, the 
discussion following (4.10) applies equally to the present procedure. We recall that 
in the absence of electromagnetic fields and, for a simply connected region, A, is a 
pure gauge field. Thus in this case, the field-free Hamiltonian corresponding to (4.5) 
is the conventional 2". 

The inherent similarity of the two procedures is most easily recognised by noting 
that af[AY] corresponds to a pure gauge field. It can be inserted at will into X or 

and the present case reduces to that discussed in 9 3.2.2. 

Another example is 
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&,. It can thus either be used to specify the proper (asymptotic) gauge for Ro to be 
the field-free Hamiltonian corresponding to a particular 2, or else obviate the preceding 
selection of the proper X o [ A , ]  by eliminating the gauge dependence of R itself. 

4.3. The gauge independent transition amplitudes 

The path dependence of the functional ![A,],  which can be expressed in terms of the 
gauge independent function g(r ,  t )  defined by (4.12), causes a corresponding path 
dependence of the gauge independent transition amplitudes. Namely, a change h g  in 
the arbitrarily chosen g corresponds to a redefinition of the canonical momentum, and 
hence also of the field free state &[A,] ,  

4dAw1-9 U&[A,I. (4.18) 

However, the consequent non-uniqueness of the gauge independent transition ampli- 
tudes, 

(4,fAw1+.4(t; E)) ’  ( ~ A , I L , W , I I + A ( t ,  E ) ) ,  (4.19) 

is not an artifact of our theory, rather it reflects the fundamental non-uniqueness of 
the classical Lagrangian as well as the Hamiltonian, which were discussed in 0 2, and 
are familiar from classical mechanics. Thus the problem posed in quantum mechanics 
by the dependence of wavefunctions on the arbitrary gauge of the potentials is traced 
to the inherent non-uniqueness of the Lagrangian and Hamiltonian formulations of 
classical mechanics, even in the absence of electromagnetic fields. However, just as 
the latter has no physical consequence, so also the path dependence of the Hamiltonian 
cannot have any physical consequence. That is, any directly observable quantity must 
be uniquely specified. It cannot depend either on the choice of path or alternatively, 
on the choice of the gauge independent function g(r ,  t ) ,  either of which specify the 
functional f [ A ] .  This is analogous to the independence of the calculated predictions 
of observations from the choice of the canonical variables. 

5. Discussion and conclusions 

In this paper we have drawn attention to some issues pertaining to gauge covariance 
and gauge independence in non-relativistic physics. We have noted that for classical 
charged particles, which in the conventional fashion are minimally coupled to the 
electromagnetic field, the velocity is gauge independent, whereas the canonical momen- 
tum is gauge dependent. The corresponding results were also derived for quantum 
systems. Applying the correspondence principle, we obtain a quantum mechanical 
description in which the wavefunction depends on the gauge. This gauge dependence 
of the wavefunction manifests itself in a multiplicative space-time dependent phase 
factor, and leads to a velocity operator which is explicitly gauge dependent. However, 
in agreement with the correspondence principle, its matrix elements are not gauge 
dependent. This is in contrast to the momentum operator, which is not gauge depen- 
dent, but which has a gauge dependent expectation value. Finally, we also note that 
the conventional, minimally coupled quantum mctchanical Hamiltonian is explicitly 
gauge dependent. 

We noted on purely physical grounds that no direct measurement can depend on 
the gauge used to calculate the prediction of its outcome. Hence, the same must also 
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apply to any prediction based on quantum mechanics. Purely local measurements, 
such as that of position, are gauge independent, whereas some non-local quantities, 
such as the momentum, can have gauge dependent expectation values. We have 
remarked that canonical variables, canonical momenta and Hamiltonians are not 
uniquely defined in classical mechanics even when the trajectories of the particle are 
known. This fact was traced to the freedom in the choice of the Lagrangian: the 
addition of a total time derivative does not change the Euler-Lagrange equations of 
motion, but because this changes the Lagrangian, the canonical variables are non-unique 
and can be chosen appropriately. This non-uniqueness reflects itself in a corresponding 
non-uniqueness of wavefunctions. In particular, the specification of the energy of a 
system does not determine the wavefunction. Wavefunctions that describe the same 
physical state of a system can differ by space-time dependent phase factors. Con- 
sequently the question ‘what is the probability of finding a system, interacting with an 
electromagnetic field, in a given field-free state of energy E ’  has no unique answer 
because this probability can be gauge dependent. However, we have demonstrated 
that a suitable choice of the free particle Hamiltonian eliminates this gauge dependence. 

We have used the freedom of adding a total time derivative of a function f to the 
Lagrangian to obtain a gauge independent Hamiltonian formalism. We constructed 
gauge independent momenta, Hamiltonians and wavefunctions. We noted that this 
gauge dependent definition of the arbitrary function ‘f’ still allows the addition of the 
total time derivative of a gauge independent function ‘g’ to the Lagrangian. Thus, 
our procedure leads to a gauge independent, but path dependent, canonical formulation 
of non-relativistic quantum mechanics, which is similar to Mandelstam’s ( 1968) refor- 
mulation of relativistic gauge field theories. We emphasise that this path dependence 
cannot be eliminated, because it is equivalent to the quasi-invariance of the Lagrangian, 
i.e. the freedom of adding a gauge independent total time derivative to the Lagrangian. 
That is, although we could eliminate all traces of gauge dependence, we cannot eliminate 
the underlying freedom of performing gauge independent canonical transformations. 
The dependence of the Hamiltonian on the arbitrary gauge independent function g( r, t )  
does not pose any practical difficulty. Just as we expect direct physical predictions to 
be independent of the gauge, we also expect the choice of canonical variables not to 
affect any direct physical predictions. This is in fact one of the tests of the reliability 
of any physical prediction. 

Finally, we note that our gauge invariant Lagrangian and the corresponding Hamil- 
tonian contain an unconventional feature: they are non-local. For instance, the 
Lagrangian at a given time depends on the vector potential at previous times. In field 
theory, the Lagrangian density will also be non-local in space-time. The consequent 
non-locality due to an externally applied electromagnetic field is irrelevant. However, 
when this formalism is applied to quantum electrodynamics and to the other gauge 
field theories the consequences of this new feature must be considered carefully. 
Mandelstam’s work leads us to believe that such an extension of our theory is feasible 
and that his results can now be obtained in the canonical procedure which we have 
developed for non-relativistic systems. 
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